
if m is an integer (~ is an arbitrary constant). Substituting Eq. (2.25) into Eq. (2.24) 
and equating the terms with like powers of exp(-i~t), we obtain an infinite system of linear 
differential equations which must be solved successively to determine the functions Mi(x). 

e) Example. To illustrate the problem examined above we shall present a numerical exam- 
ple. We take the experimental values from [i]. The following starting data are provided to 
the program: t = (0-15) sec; E = 4.109 kg/m.sec2; G = 2500 kg; (B 0 = 84.10 -s, B~ = 5.6.10 -s) 
(kg/m2"sec2)-msec-l; B = 3"10-2 sec-l; m = 1.72; h = 0.25 m; p* = 103 kg/m3; g = 9.81 m/sec 2. 

Figures I and 2 show the curves of the approximation for the bending moment M and the 
approximations for the deflection v as a function of the coordinate x for a fixed time t = 
15 sec. The curves i correspond to the zeroth approximation of the problem (classical instan- 
taneous elastic solution) and the curves 2 are the first approximation of the problem. These 
curves were calculated using the formulas obtained analytically (the points a and b above). 
It was established numerically that for the time t = 15 sec five approximations of the prob- 
lem are adequate (curve 3). As the time increases more terms must be retained in the series 
expansion (2.7). 

1. 
2. 
3. 

. 
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FLOW AND SEPARATION OF A RAREFIED BINARY GAS MIXTURE 

IN A CYLINDRICAL GAP WITH SUPERSONIC ROTATION 

OF THE OUTER CYLINDER 

Vo D. Borisevich and So V. Yupatov UDC 533.6.011.5:621.039.342 

Study of cylindrical Couette flow at Knudsen numbers Kn = 10-2-1 is not only a classi- 
cal problem of rarefied gas dynamics, but is also of practical interest [i, 2]. In the case 
where the outer cylinder is fixed while the inner one rotates with a velocity equivalent to 
a Mach number M ~ i, the flow has been studied experimentally [3] and numerically, both by 
direct statistical modeling [i], and by solution of model kinetic equations [2, 4]. At su- 
personic inner cylinder velocities [5, 6] analyzed the effect on flow characteristics of the 
Mach number and gap size. Significanty fewer studies exist for the case where the outer 
cylinder rotates while the inner is at rest. A numerical solution of the Boltzmann equation 
was found for that problem in [2] for the BGK model. Flow of a rarefied binary gas mixture 
in a planar gap was studied for various ratios of component masses and concentrations in [7], 
which obtained velocity distributions and components of the viscous stress tensor in the gap. 

i. The present study will perform a numerical investigation of the flow of a rarefied 
binary gas mixture with molecular masses ~I = 300 and ~2 = 400 in the gap between coaxial 
cylinders using the direct statistical modeling method of 48]. The outer cylinder of radius 
r 2 rotates with an angular velocity~2 (M = ~2r2/(TRTo/~2)I/2 3), and the indices i and 2 
below will refer to quantities defined on the surfaces of the inner and outer cylinders, re- 
spectively; T o is the temperature of both cylinders; R is the ideal gas constant; y is the 
adiabatic index for the heavy gas, equal to unity; Kn = ~2/(r2 - rl) was varied over the 
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range 10-2-2. The "rigid sphere" model was chosen for the intermolecular interaction, with 
identical interaction section for the model particles. The gas mixture density at the outer 
cylinder surface was evaluated from the exponential distribution 

~(, ) = k e ~ p  A (rlr~)~, ( l )  

where h = [cp2 + (1 - c ) p l ] ~ 2 2 r 2 2 / 2 R T 0 ,  c i s  t h e  r e l a t i v e  c o n c e n t r a t i o n  o f  t h e  heavy  compo- 
n e n t  in  t h e  m i x t u r e .  The c o n s t a n t  k was d e t e r m i n e d  by t h e  n o r m a l i z a t i o n  c o n d i t i o n  

r 2 

N = 2k S exp A (r/r~) ~ rdr. 
r I 

The t o t a l  number o f  model  p a r t i c l e s  N used  in  t h e  c a l c u l a t i o n  was 8000. The a l g o r i t h m  was 
c o n s t r u c t e d  such  t h a t  t h e  f low f i e l d  was d i v i d e d  i n t o  20 c e l l s  o v e r  r a d i u s  f o r  Kn ~ l0 - i  and 
i n t o  40-50  c e l l s  f o r  Kn < l0 -1 .  The c h a r a c t e r i s t i c  t ime  of  gas  t e m p e r a t u r e  change  to  was 
e v a l u a t e d  f rom t h e  t h e r m a l  d i f f u s i v i t y  e q u a t i o n  to  ~ ( r2  - r l ) 2 / •  ~ x/Kn 2 (where  X i s  t h e  
t h e r m a l  d i f f u s i v i t y  c o e f f i c i e n t  and T i s  t h e  p a r t i c l e  mean f r e e  p a t h  t i m e ) .  C a l c u l a t i o n s  
showed t h a t  in  t h e  i n t e r v a l  f rom 2t0 t o  3t0 t h e  maximum change  in  t e m p e r a t u r e  w i t h  t ime  i s  
n o t  more t h a n  1%. C o n s e q u e n t l y ,  f o r  t i m e s  t ~ 3t0 i t  can be assumed t h a t  t h e  f low c h a r a c t e r -  
i s t i c s  have  r e a c h e d  a s t e a d y  s t a t e  w i t h  a s y s t e m a t i c  e r r o r  n o t  e x c e e d i n g  1%. The volume o f  
t h e  s t a t i s t i c a l  sample  o v e r  c e l l s  a f t e r  a t t a i n m e n t  o f  t h e  s t e a d y  s t a t e  c o m p r i s e d  ( 1 - 5 ) ' 1 0 4  
p a r t i c l e s  o f  each  component .  The s t a t i s t i c a l  e r r o r  in  d e t e r m i n i n g  f low c h a r a c t e r i s t i c s  was 
t h e n  a l s o  n o t  more t h a n  1%. For  g r e a t l y  d i f f e r i n g  component  c o n c e n t r a t i o n s  w e i g h t  f a c t o r s  
were used  in  t h e  c a l c u l a t i o n s  as  in  [ 8 ] .  

2. The n u m e r i c a l  c a l c u l a t i o n s  p r o v i d e d  d i s t r i b u t i o n s  o f  t e m p e r a t u r e ,  d e n s i t y ,  and t h e  
a z i m u t h a l  v e l o c i t y  component  a c r o s s  t h e g a p  f o r  e a c h  Component i n d i v i d u a l l y ,  as  w e l l  as  f o r  
t h e  m i x t u r e  as  a whole .  The v a l u e s  found  f o r  ~i = ~2 were compared w i t h  t h e  r e s u l t s  o f  [ 2 ] .  
F i g u r e  1 shows t h e  gas  t e m p e r a t u r e  d i s t r i b u t i o n  a c r o s s  t h e  gap (y  = ( r  - r i ) / ( r  2 - r l ) )  f o r  
v a r i o u s  Kn. Curves  1-4  c o r r e s p o n d  t o  Kn = l0  - 2 ,  l0  -1 ,  5-10 - i ,  0 . 9 .  The s o l i d  l i n e s  a r e  t h e  
r e s u l t s  o f  t h e  p r e s e n t  s t u d y ,  w h i l e  d a s h e s  i n d i c a t e  d a t a  f rom [ 2 ] .  The s a t i s f a c t o r y  a g r e e -  
ment o b t a i n e d  a t  Kn = 0 .9  i s  l o s t  w i t h  i n c r e a s e  in  gas  d e n s i t y .  The d i v e r g e n c e  a t  low Kn i s  
a p p a r e n t l y  r e l a t e d  t o  t h e  s i m p l i f i e d  form of  t h e  c o l l i s i o n  i n t e g r a l  in  t h e  BGK model ,  which  
i n t r o d u c e s  an e r r o r  which  i n c r e a s e s  w i t h  i n c r e a s e  in  p a r t i c l e  c o l l i s i o n  f r e q u e n c y .  

The d i s t r i b u t i o n  o f  t h e  l og  o f  r e l a t i v e  gas  d e n s i t y  o v e r  t h e  gap in  l n n ( r ) / n ( r i )  i s  
i l l u s t r a t e d  in  F i g .  2 (x = ( r / r f ) 2 ) .  I n  c o n t r a s t  t o  t h e  c a s e  where  t h e  i n n e r  c y l i n d e r  i s  
a b s e n t ,  t h e  gas  d e n s i t y  d i s t r i b u t i o n  i s  d e p e n d e n t  on Kn ( c u r v e s  1-4  c o r r e s p o n d  t o  Kn = 10 -2 ,  
2 . 5 . 1 0  -2 , l0  - i ,  1 ) ,  w h i l e  t h e  i n c r e a s e  in  Kn, as  d e f i n e d  i n  [ 2 ] ,  n ( r )  t e n d s  t o  an exponen-  
t i a l  Bo l t zmann  d i s t r i b u t i o n  ( d a s h - d o t  c u r v e ) .  With d e c r e a s e  in  gas  r a r e f a c t i o n  t h e  depen-  
dences  found  h e r e  a p p r o a c h  t h e  s o l u t i o n  f o r  a c o n t i n u o u s  medium and i s o t h e r m a l  f l ow (da shed  
line). A characteristic feature of the gas/density dependences obtained herein at low Kn is 
the presence of a minimum at the surface of the inner cylinder, which is related to a maximum 
in the gas temperature in this region, Lt!i:follows from analysis of the equations for a con- 
tinuous medium that at low Kn ga s heating i~orelated basically to the process of viscous dis- 
sipation of the gas kinetic energy. For a::.~!anar gap an analytical solution can be obtained 
for the temperature profile, which is paraboli~iin form, and symmetric about the midpoint of 
the gap. Meanwhile, the value of:the maximum~ is p~oportional to M 2. In a cylindrical gap 
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the dependence on M 2 is maintained, but the position of the temperature maximum is toward the 
inner cylinder. A similar asymmetry has been observed in the problem of rotation of the 
inner cylinder [5, 6]. 

3. The dependence of gas density distribution across the gap on Kn leads to an in- 
_ C2 ~ C1 

crease in the component separation coefficient ~0 i~c2/i_--~ with increase in rarefaction 

(c is the relative concentration of the heavy component at the cylinder surfaces). Thus, 
for a 50% mixture s 0 varies from 1.43 at Kn = 10 -2 to 1.94 at Kn = 2. For an exponential 
density distribution across the gap s 0 = 2.05. 

i % / , c ( x )  
Figure 3 shows dependence of the separation coefficient ~(x) = l--c2~--c(~ on coordinate 

x for various Kn. The presence of a minimum in the gas density at the surface of the non- 
moving cylinder at Kn = 10 -2 leads to the development of a maximum in ~(x) in the same re- 
gion. As was shown above, the value of the temperature maximum (density minimum) depends 
on the Mach number for the mixture as a whole, Mm, which changes with change in mixture 
composition. This in turn leads to a dependence of the mixture separation coefficient on 
component concentration. Calculations show that at c = 90% and c = 10% the behavior of ~(x) 
differs significantly (curves 1 and 2 of Fig. 3). For a 10% mixture (M m = 2.64) the change 
in =(x) is monotonic. For a 90% mixture (M m = 2.96) there is a maximum in ~(x), while s 0 
is 12% less than for the 10% heavy component concentration, although the pressure drop across 
the gap is larger in this case. The dashed line 3 of Fig. 3 corresponds to the solution for 
a 50% mixture, found from the equation for a continuous medium in the isothermal case, while 
curve 4 is the same solution, but with consideration of the temperature distribution found 
in the calculations. The latter agrees well with the results of the present study, with 
the exception of a small region near the surface of the inner cylinder (curve 5). The re- 
sults indicate that in cylindrical Couette flow at low Kn, aside from the pressure gradient, 
the temperature distribution, which is dependent on mixture concentration, exerts a signifi- 
cant effect on separation. 

With increase in Kn the dependence of ~(x) on mixture composition weakens, practically 
disappearing at Kn = i. For a severely rarefied gas a(x) is described well analytically by 
distribution (i) with an error not exceeding 5%, as illustrated by curve 6 of Fig. 3, calcu- 
lated for Kn = 1 for 90% and 10% mixtures, and dashed line 7, obtained from density distribu- 
tion (i). This can be explained by the fact that in a highly rarefied gas particle interac- 
tion is absent, as a result of which the mixture components behave independently. 

The study performed shows that in a cylindrical gap flow of a binary gas mixture is 
described well by an exponential law at Kn e i. With increase in gas density a deviation 
from Boltzmann distribution occurs, which leads to dependence of the separation coefficient 
on mixture composition. 

The authors thank V. M. Zhdanov for his evaluation of the study. 
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